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A Simplified Calculation for the Elastic Constants of Arbitrarily
Oriented Single Crystals

By Davip 8. LIEBERMAN* AND STANLEY ZIRINSKYT
Columbia University, New York, N.Y., U.S.A.

(Received 22 June 1954 and in revised form 25 December 1955)

A simple, competely general, and easily remembered scheme is presented for solving problems
involving the transformation of elastic constants from one orthogonal coordinate system to another
rotated with respect to the first. Since the components of stress can be expressed as the elements
of a second rank tensor, and the components of strain (if properly defined) can likewise be expressed
as the elements of a second rank tensor, the elastic constants connecting stress and strain must be
the elements of a fourth rank tensor. The method depends upon the simultaneous contraction of
the fourth rank tensor and the quadratic products of the direction cosines connecting the two axis
systems. The application of the resultant ‘transformation matrix’, instead of the conventional
methods, reduces the number of steps to a minimum with a corresponding reduction in the chance
for errors in the computation. The saving in time and labor is considerable, as is shown by typical

examples.

1. Introduction

In many solid-state experiments on single crystals
(e.g., the determination of elastic constants) it is
necessary to express the elastic moduli or elastic
constants in an axis system rotated with respect to
an orthogonal system oriented along the principal

* Present address: University of Illinois, Urbana, Illinois,
U.S.A.

+ Present address: General Electric Company, Schenectady,
N.Y., U.S.A.

crystallographic directions of the crystal. The matrix
of the direction cosines connecting an arbitrary axis
system (primed) in the specimen with this crystal-axis
system (unprimed) can usually be determined in a
straightforward manner (e.g., by X-ray analysis).
Then if a system of stresses is applied to the specimen
and the resultant strains are measured, the elastic
constants of the material (relative to the unprimed
system) can be calculated.

Difficulties in practice often arise due to the neces-
sity for contracting a fourth rank tensor, and the
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cumbersome summation process involved. Further
difficulties are encountered because the matrix of the
strains does not transform as a second rank tensor
with the strain elements defined in the usual manner.
There are factors of %, 2 etc. that must be inserted
at various points in the summation or in the tensor
terms if the results are to agree with the elastic con-
stants usually stated in the generalized form of
Hooke’s Law.

A simple, completely general, and easily remembered
scheme for solving such problems is here presented.
The following outline constitutes a set of directions
for calculating elastic constants in a rotated axis
system ; the mathematical development of the method
will be found in § 3.

2. The simplified calculation

(A) The elastic constants

1. Determine (experimentally) the direction cosines
connecting the two unitary orthogonal axis systems
and write them in the following array:

’ Ty Ty L3y

xi 1311 B2 Bz
@, Bar Boe  Bas (1)
x; Bai Basz B

i.e. the matrix form of the three linear equations

x1 = P11+ Pra%e+Praxss ete.

2. Write the quadratic combinations of the direction
cosines in the following 6 x6 array (which is defined
as the matrix y):

v =
T Bh PR 1s
ﬁgl ﬁ§2 ﬂ§3 5221323 ﬁ28ﬁ21 ﬂ21ﬂ22
ﬂgl /352 ﬂ§3 ﬂ32ﬁ33 ﬂ33ﬁ31 ﬁ31ﬂ82

s b (1) (157) (207
2ab 20at 200t (557) (5 ) (525
Bt 2t 28 (57 ) () (020
An unambiguous method for determining the elemer(j,;

of y will be given in the next section. This one array
is the same (algebraically) for the calculation of all

ﬂ12ﬂ13 .513ﬂ11 ﬂ11ﬂ12

A SIMPLIFIED CALCULATION FOR THE ELASTIC CONSTANTS OF CRYSTALS

elastic constants, no matter what the crystal sym-
metry.

In the generalized form of Hooke’s Law, the com-
ponents of strain e,, are written as linear functions of
the components of stress X,,, and the coefficients S,
are defined to be the elastic constants. (Conversely,
the stresses are linear functions of the strains and the
coefficients C,; are the elastic moduli*.) Furthermore,
from the conservation of energy, S, = S,, (and
C. = C4) and the 36 elements connecting the six
components of strain with the six components of
stress are reduced to 21; we have then the following
scheme:

X, X w X, X vz X, X 2y
ez | Su Sz Sz S S5 SlG
€yy Sz Ses Sas Say S5 Sy
€z 13 23 33 Ssg Sz Sy (3)
€yz 14 24 sa S Sis S
€z 15 25 35 Sas Sss Spe
€ry S Ses Szs S Sse Ses

(Interchanging e,, and X,, a similar array can be
written for C;.)

The rows and columns of § and ¢ are denoted by
running subscripts A and ¢ respectively (4, o =
1,2,...,6), ie. Yas = 2B93Pss-

3. To obtain S;,, write the 4 row of 9, the array of S,
and the g row of 9 written as a column, as follows:

811 812 815 Sis S1s Sie « Y1 + - - -

12 Sao Sa3 Spy o5 Sos | | - Y2 + -« -

S, = 'J"'/u ‘}’.zz ‘J/Aa 7’.14 'J’as 7./18 S1s Sp3 Saz S3q S35 Sy | | - Yoz - - 4)

1a Saq Say Sag Sy Sue | | - Yoa - -
S5 Ses Sa5 Sa5 Sss Sse | | - Vo5 + -«
| S16 Sa6 Sas Sae Sse Sss_ © Vo6 ¢+ -

4. Perform the following operations: Multiply the
first row of S times the column (y,, ..., y,) term by
term—(8y; Y01+ 812Vp2 + - - - +816¥06)—and multiply this
by the 1st element of the row, y;. Repeat for the
second row of S and the second element of the row,
Y2(S Yot +stygs) etc. The sum of these six
expressions is S},. [S;, will be recognized as the Ag
element of the ‘transformed’ matrix S’ and ¢ as the
‘transformation matrix’ in this special six-dimensional
space. In § 3 it will be shown how (4) results from the
simultaneous contraction of quadratic combinations
of the direction cosines and a fourth rank tensor.]

Two examples will serve to illustrate the brevity
and simplicity of this method: Suppose Sy is required
for the most general case of 21 elastic constants. The
second and third rows of y are substituted in (4) as

a row and column respectively and the answer written
immediately :

* These quantities are often called the coefficients of com-
pliance and elasticity respectively, and to further confuse the
issue, in some references (Wooster, 1938), the C’s are called
the elastic constants and the S’s the moduli.
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[ M ° . M . . _Sll SIZ SIS Sl4 Sl5 SIG ﬂgl
ﬂgl ﬂ§2 ﬂ§3 ,322ﬂ23 ﬂ21ﬂ23 ﬂ2lﬂ22 SIZ AS’22 SZ3 SZ4 SZS S26 612*12
gl T T[S 8 Sia Suq Sgs Ss| | - B -
2 N . . . . Sl4 S24 834 S44 S45 S46 M ﬂ32ﬂ33 ¢t (5)
15 25 835 S45 S55 S5G < ﬂ33ﬂ31 LR
| S N * M * M SIG 26 36 46 56 SGG__ | . ﬁ31:332 ot

= B21(811P31+ 812832 + 8133+ S14Bs2B35 + S15853Bs1 -+ S16B318s2) +
B22(S12831+S20B32 + 82555+ S24BoB33+ SasBasBar -+ SaeBaiBas) +

SIS T E G

B21B22(S16B31+S26f32+S6855+ SasBs2833+ SseB33831 + SeeB31Bs2) -

After collecting the coefficients of each S, (5) is seen to be the same as the relation stated in the literature

(Cady, 1946)*:

Szs = B21831811+ 32032520+ BraB3sSss+ (B3283s + Brafis)Sas+ - -

. +1322.332:823ﬂ33844+ A

+ B21831(B22Bas+ B21Ba2)Sss+ (831832833 + B3182aBa3)S1a+ - - -

+B21831(B21B33+ B23Ba1)S1

5+ Ba1Ba1(Be1Bse+ BooBsr)Sie+ - - - -

If 8y, is required for a cubic crystal, the proper array of elastic constants for cubic symmetry and the first

row of y are inserted in (4) and the answer written:

1 Bie Bls ProPis PraBus Bubia| [S11 Siz Sis 521 -----
. . . . Sm gn 212 géz .....
Sl — 3 . . . - - 12 12 11 13 lllll 6
u= L Sy BisBrs - - .« - . (6)
S whu - - - - -
L J1Bufre - - - - -
= P11(B11811+ B12512+ B13512) + B12(B11S12 + B12811 + B13812) + - - - +B11B12(B128115m) ;

ie. Sp= 811—1{2(811—81z)
which is the expected result (Zener, 1948).

(B) The elastic moduli

The moduli (the C’s) are expressed in a rotated axis
system using the same calculation except that the
matrix p is replaced by the matrix «f:

i ﬂ%l ﬂiZ ﬂ%i‘l 2ﬁ12ﬂ13 2ﬂ13ﬂ11 21811ﬂ12
ﬂgl ﬂ§2 ﬂ§3 2ﬁ22ﬂ23 2ﬂ23ﬂ21 2ﬂ21ﬂ22
ﬂgl ﬂ§2 ﬂ§3 2ﬂ32ﬂ33 2.333ﬂ31 21331.332

Bubon Bubs Busfss (520057) (Bufis®) (b
Bubus BB fustrs (520057) (Bulor™) - (Bubia)

Buba bbb (525) (G5 (,‘31;2::‘(2),_)

The sequence of operations delineated above for cal-
culating the S;; are thus the same for C;; except that
the rows and columns of ¢ and S are replaced by those

* An error in the coefficient of S;¢ in the expression for
:S23 in this reference (equation (26), p. 70) has been corrected
in this paper.

1 It has been pointed out to the authors that the 6x 6
array « has previously been reported by Bond (1943). How-

—84a}(BruBratBuiBra+PraPis) »

of « and C. It can easily be verified that the C,; found
in this way agree with those in the literature found
by much more cumbersome methods (Cady, 1946).
The connection between « and y will be treated in § 3.

3. Mathematical development

The transformation between two sets of unitary or-
thogonal axes, (1), is written in the standard tensor
notation as

xp = Buw; . (7N

The matrix of the stresses,

X xz X zy X zz
X = (Xw Xy Xyz) ) (8)
X X X
becomes simply
(X 11 X 12 X 13)
X 21 X 22 X 23
X 31 X 32 X 33

ever, it was arrived at by collectmg the coefficients of the
elastic constants in the rotated axis system and arranging
them in an arbitrary scheme rather than by the tensor
method herein presented.
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and transforms as a second rank tensor:

Because of the conditions for equilibrium, X is sym-
metric, i.e.
Xry = ny = X12 = le > ete. (10)
The strain matrix is also symmetric, but if e,,, e,
etc. are defined as the strains in the usual manner,
the strains do mot transform as the elements of a
second rank tensor (Mason, 1950). However, if we
write the ‘strain’ tensor elements as

1
€rx %ezy 2€2z €11 €12 €13
e=4ey ey Bey) =€ €2 €], (11)
]2‘6” %eyz €z el:i 623 e33
where e, = €, ;5 = }e,, etc., then
,
exi = BroPipeop - (12)

The two second rank tensors (8) and (11) are connected
by a fourth rank tensor. One way in which the rela-
tionship between the tensor elements can be written is

€op = Sopmnan ’ (13)
which again is Hooke’s Law.
In a rotated axis system,
ellti = Slzirsxr"s ’ (14)
and from (12)
€pi = ﬂkoﬂipeop .
Substituting from (13),
ellri = ﬂkoﬂipsopmnan .
But from (9)
an = ﬂ?’mﬂ.mX;s ’ (15)
and hence
Cp = ﬂkoﬂipsopmnﬂrmﬂsn-x;s . (16)
Thus, comparing (14) and (16),
SI:irs = lgko/gipsopmnﬂrmﬂsn . (17)

Symmetry and energy-conservation considerations
indicate that

Sopmn = Sopnm = Sponm =S pomn = Smnop = Snmop = Smnpo = Enmpo >
(18)

and the 81 sy, are reduced to 21, Thus (13) can be
written in the form of the array:

Xy Xoy Xy Xpg Xy Xp
e | Sun Suee  Suss 2S1ss 28um1 2S111e
g2 | S1122  Sasea  Sassz  2Saans 28231 2Spene
€33 | Si1a3  Saess  Szaas  2S3zes ZSapar ZSaane (19)
€93 | S1123  Sage3  Sesas  2Sazpn OSpar 2Sua1e
€31 | Sust  Seem Sazm ZSemmz 2Smar 293
€12 | Siz  Saziz Sasie 2Sme 2831z ZSia

Comparing the $,,,, of (19) with the S, of (3), it is
seen that

S = Su Sies = 381, ete.
Sp1e2 = Sz Spaes = 384  ete. (20)
Sz = Sz

Consideration of (18) and (20) leads immediately to
the following contracting scheme (Wooster, 1938):

11 22 33 23, 31, 12
l | . 832 13 21
{

vy
1 2 3 4 5 6

ki, op, etc.
(21)
d,0,0 etc.

The development thus far has been included to main-
tain a notation consistent with the literature and to
serve as a point of departure for what follows.

The elastic constants are now required in the rotated
(primed) axis system. Standard texts (Cady, 1946;
Zener, 1948; Voigt, 1910*) usually suggest the fol-
lowing procedure: Let S, be required, and use one
of the equations connecting e;; and the X, by a
matrix of the S, (similar to (3)). Assume a single
stress component X, be impressed, and write the six
equations (15) in terms of it. The values are then sub-
stituted in (13), giving the e,, in terms of S, By, and
X, The ¢,, are in turn substituted in (12). Then S,
is the coefficient of X, = X, (where b is the con-
traction of rs according to (21)) in the expression for
e, = €5, and in the general case has 21 terms.

Clearly this procedure is long and tedious. The intro-
duction of the tensor notation permits a considerable
reduction in the labor required and decreases the
opportunity for errors, since the solution now in-
volves the multiple summation indicated in (17) and
the substitution given in (20). But even this is quite
time-consuming unless the crystal possesses a high
degree of symmetry.

However, even a greater simplification results,
which permits problems of this type to be solved
quickly and easily, if the s,,,, and the quadratic
products of the f,, are contracted simultaneously in
the special way described below.

Suppose a particular S, is desired (this corresponds
to a particular sj,, = S;,). Because both k£ and ¢ are
fixed in (17), it is seen that there are only nine qua-
dratic products of f,,8;, as o and p vary from 1 to 3.
Furthermore, since S,pmn = Spomn, t€rms f,B;, and
BroBip (0 = p) can be combined and thus the nine
terms are reduced to six for a given k and <. Hence

these terms can be written

BroBiv = Vs » (22)

* Voigt’s treatment differs from that of Cady (1946) and
Zener (1948) (and described in this paper) in that it involves
setting up the strain' energy function in the two coordinate
systems, transforming the coordinates, and comparing the
coefficients of the elastic constants. Like the treatments of
Cady and Zener, it is quite complex and requires various
mnemonic devices to obtain the proper coefficients which
appear in the expressions, e.g. how to write S,; once S|, is
obtained, ete..
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where 4 corresponds to the contraction of ko according
to (21) in the special way defined by (22), and simi-
larly for 6. This step, which defines y,; and forms the
basis for this method, is seen more clearly by the
following scheme:

ﬁ}zd =Yau
ﬂ%cz = Va2
ﬂis =Y k=1
ﬂkzﬂka =Y A=1,2,3
BiaBri= V1
BriBiz=V1s
(23)
2Bubin=yn
2BxeBiz= V1o _
2BiBis=7yis | kK +1
(BisPiatProBis) =V | A =4,5,6
(BrBia+Busbit) = Y15
(BieBir+BraBiz) = a6

The reason for the discrepancy between the terms
with & = ¢ and % == ¢ becomes apparent from considera-
tion of (20).

With this effective collapsing of the f quadratic
terms from nine to six, the S, of (3) are now the proper
constants in our special method of summation, rather
than the s,,,, of (19). This is seen by performing the
sum in (17), collecting terms, using the relations of
(20) and substituting (22). Thus, instead of using (17)
ete., the S,, can be obtained directly as

(24)

This is the Ap term of the ‘transformed’ matrix §’,
ie.

8 = ’yS';/ ’ (25)
where y is the matrix of the terms formed in accordance
with (23) and is given in (2), S is the matrix of (3)
and ¥ is the transpose of y formed by interchanging
the rows and columns of (2). Hence, using the standard
methods of matrix algebra and writing only those terms
which contribute to Sz, (24) can be written as (4)
and thus the method stated in § 2 has been proved.

Likewise, one could in a straightforward manner
obtain the matrix « by writing instead of (13),

Xop = Copmnlmn (13")
and, proceeding in the same way, by simultaneous
contraction obtain

¢ = aCx (25")
and (2').

However, it is much easier (and more instructive)
to obtain the relation between « and y by considering
some function of both the 8’s and the C’s which is
invariant under a transformation of axes. The sim-

plest function of this type is the product of the two
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matrices S (3) and C (Zener, 1948). Since X = Ce
and e=S8X, therefore X=C8X and thus CS=8C=1I,
where I is the indentity matrix (with 1’s along the
main diagonal and zeros elsewhere). Thus S and C
are reciprocally related:

§=0C1 (and C = 871, (26)
where C-1 is the reciprocal matrix of C, i.e. its #jth
term is C;' = C*(—1)"*7/AC, where AC is the deter-
minant of the matrix C, and C7 is the cofactor formed
by deleting the jth row and ith column of the deter:
minant of C' (Wills, 1946). [ is invariant under a trans-
formation of axes and thus, from (25) and (25),

C'8 =1=oaCuySy, ay=1=ay
and thus
Y= 5"_1 ) (27)

which can be verified termwise from (2) and (2').

Hence it is seen that & and y are not independent*
and thus, when one is determined, the other is known.
Computations are further facilitated since both y and
o are unitary, i.e. da = Ay = 1.

4. Summary

A simple, easily remembered scheme is developed for
transforming the elastic constants (or the elements of
any fourth rank tensorf connecting two symmectric
second rank tensor) from one rectangular coordinate
system to another system rotated with respect to the
first. The application of this method, instead of the
conventional methods, reduces the number of steps
to a minimum with a corresponding reduction in the
chance for errors in the computation. The saving in
time and labor is considerable, as is shown by two
typical examples.

This work was sponsored in part by the Office of
Ordinance Research, U.S. Army (Contract DA-30-
069-ORD-459) under the supervision of Dr T. A.
Read, whose suggestions regarding the presentation
are appreciated.

* Bond (1943) obtained (27) by considering the invariance
of the strain energy, which of course cannot depend upon the
reference system employed and is invariant under a transfor-
mation of axes.

1 The fourth rank tensor, which can be reduced from 81
to 36 terms if it connects two symmetric second rank tensors,
does not have to be symmetric itself for the formulae (18)-(23)
to be correct. The method is applicable even if S;; = S;;
(Sopmn F Smnop) 8ince the development in no way depends upon
the symmetry of S. In the case of elastic constants, s,,,,, =
Sopnm becaunse of the symmetry of e and X; S,pmy = Sy
because of conservation of energy, i.e. oU/[de = g"? where lg
is the strain energy function.
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An X-ray Study of x-Keratin. I. A General Diffraction Theory for Convoluted
Chain Structures and an Approximate Theory for Coiled-Coils

By A.R. Lanc*
Philips Laboratories, Irvington-on-Hudson, New York, U.S. 4.

(Recetved 10 June 1955)

A fibre structure is examined consisting of a periodic distribution of electron density along an
infinite line which is folded or coiled in space in a pattern arbitrarily complex but repeating
regularly along the fibre axis. The electron-density distribution on the spiral is expressed as a
Fourier series, periodic in the distance measured along the line, and the same holds for each of the
cartesian coordinates of a point of the spiral. The expression for the structure amplitude on any
layer can be written as a product of Fourier coefficients of these four series. The approximate
theory for the coiled coil regards the compound helix as a minor helix deformed with the periodicity
of the major helix, the scattering contribution of each turn of the minor helix being thereby modu-
lated in phase and amplitude. The diffraction pattern of a three-strand cable composed of «,
helices has been calculated in the region of meridional spacing 6-1-4*7 A and shows qualitative
agreement with the observed poreupine-quill pattern.

Introduction

Pauling & Corey (1951a) proposed a structure for
a-keratin consisting of «x-helices packed together in
alignment with the fibre axis, and Perutz (1951)
pointed out that the observation of a relatively strong
meridional 1-5 A reflection in materials such as horse
hair and porcupine quill gave strong support to this
idea. On the other hand, the projection on the fibre
axis of the electron density of the «-helix shows no
periodicity corresponding to the helix repeat distance,
and so the strong meridional arc at 5-18 A, charac-
teristic of the a-keratin pattern, cannot be explained
by the simple model of x-helices in parallel array. The
way out of this difficulty was shown in principle by
Crick (1952) and Pauling & Corey (1953), who sug-
gested that the x-helix axis was inclined to the fibre
axis and itself followed a larger helix. It is easily seen
that the projection on to the fibre axis of such a
coiled-coil structure possesses a periodicity corres-

* Now at the Division of Engineering and Applied Physics,
Harvard University, Cambridge 38, Massachusetts, U.S.A.

ponding roughly to the x-helix repeat, and hence will
give some approach to the observed meridional dif-
fraction pattern. The apparently complex calculation
of the diffraction pattern of a structure containing
coiled-coils can be much simplified by regarding the
structure as a grating composed of a repetition of
single turns of the minor helix (i.e. the x-helix) with
a superimposed modulation in scattering amplitude
and phase, the modulation wavelength being the major
helix axial-repeat distance. On this basis the writer
has derived a simple approximate theory for the rapid
calculation of the meridional and near-meridional dif-
fraction pattern of coiled-coils assembled in multi-
strand cables. An exact theory for the calculation of the
whole diffraction pattern of coiled coils has been
developed independently by Crick (1953a).

The present paper describes a general diffraction
theory applicable to fibres consisting of atomic chains
folded in arbitrarily complex fashion. This reduces to
Crick’s formula as a special case. An account is then
given of the approximate theory. It is compared with
the exact theory, and applied to calculate the diffrac-



