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A Simplified Calculation for the Elastic Constants of Arbitrarily 
Oriented Single Crystals 
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A simple, competely general, and easily remembered scheme is presented for solving problems 
involving the transformation of elastic constants from one orthogonal coordinate system to another 
rotated with respect to the first. Since the components of stress can be expressed as the elements 
of a second rank tensor, and the components of strain (if properly defined) can likewise be expressed 
as the elements of a second rank tensor, the elastic constants connecting stress and strain must  be 
the elements of a fourth rank tensor. The method depends upon the simultaneous contraction of 
the fourth rank tensor and the quadratic products of the direction cosines connecting the two axis 
systems. The application of the resultant ' t ransformation matr ix ' ,  instead of the conventional 
methods, reduces the number of steps to a minimum with a corresponding reduction in the chance 
for errors in the computation. The saving in time and labor is considerable, as is shown by typical 
examples. 

1. I n t r o d u c t i o n  

In  m a n y  solid-state exper iments  on single crystals  
(e.g., the  de terminat ion  of elastic constants)  it  is 
necessary to express the  elastic moduli  or elastic 
constants  in an axis sys tem ro ta ted  with respect  to 
an or thogonal  sys tem oriented along the  principal  

* Present address: University of Illinois, Urbana, Illinois, 
U.S.A. 

t Present address: General Electric Company, Schenectady, 
:N.Y., U.S.A. 

crystal lographic directions of the  crystal .  The ma t r ix  
of the  direction cosines connecting an a rb i t r a ry  axis 
sys tem (primed) in the  specimen with this crystal-axis  
sys tem (unprimed) can usual ly  be determined in a 
s t ra igh t forward  m a n n e r  (e.g., by  X - r a y  analysis).  
Then if a sys tem of stresses is applied to the  specimen 
and the  resu l tan t  s trains are measured,  the  elastic 
constants  of the  mater ia l  (relative to the  unpr imed 
system) can be calculated. 

Difficulties in pract ice often arise due to the  neces- 
si ty for contrac t ing a four th  r ank  tensor,  and  the  
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cumbersome summation process involved. Further  
difficulties are encountered because the matrix of the 
strains does not transform as a second rank tensor 
with the strain elements defined in the usual manner. 
There are factors of ½, 2 etc. tha t  must be inserted 
at  various points in the summation or in the tensor 
terms if the results are to agree with the elastic con- 
stants usually stated in the generalized form of 
Hooke's Law. 

A simple, completely general, and easily remembered 
scheme for solving such problems is here presented. 
The following outline constitutes a set of directions 
for calculating elastic constants in a rotated axis 
system; the mathematical  development of the method 
will be found in § 3. 

2. The  s impl i f ied  calculat ion 

(A) The elastic constants 
1. Determine (experimentally) the direction cosineS 

connecting the two uni tary  orthogonal axis systems 
and write them in the following array:  

! 
Xl 

x3 

~1 ~2 ~3 

(1) 

elastic constants, no mat ter  what the crystal sym- 
metry. 

In  the generalized form of Hooke's Law, the com- 
ponents of strain e~ are written as linear functions of 
the components of stress Xxy, and the coefficients Sa~ 
are defined to be the elastic constants. (Conversely, 
the stresses are linear functions of the strains and the 
coefficients Cod are the elastic moduli*.) Furthermore, 
from the conservation of energy, Sa~ = Sba (and 
Cea = Cd~) and the 36 elements connecting the six 
components of strain with the six components of 
stress are reduced to 21; we have then the following 
scheme: 

e gsx 
eyy 
ezz 

eyz 
ezx 

exy 

$11 $12 $13 814 $15 $16 
$12 $22 $23 $24 $25 $26 
$13 ~'~23 $33 834 $35 S36 
$1~ S u $3~ S~  S~5 ~4e (3) 
$15 $25 $35 $45 $55 Sse 
~16 $26 $36 $46 ~56 ~66 

(Interchanging e~v and X~y, a similar array can be 
written for C~a.) 

The rows and columns of S and 7 are denoted by 
running subscripts 2 and ~ respectively (2, ~ = 
1, 2, . . . ,  6), i.e. 9,~3 = 2flasfl3s. 

3. To obtain S~, write the 2 row of ~, the array of S, 
and the ~ row of ~, written as a column, as follows: 

• 7!6J [$19. S~.~. $23 $24 $25 

• [$14 Z~4 $34 $44 $45 
[S~  $25 S~5 Sa5 S~5 

_ • ]_.$1~ $2~ S~6 S4e $56 Se~_ 9,o~ 

(4) 

i.e. the matr ix form of the three linear equations 
t 

X 1 = ~11Xl+~12~2+~13X3, etc. 

2. Write the quadratic combinations of the direction 
cosines in the following 6 × 6 array (which is defined 
as the matr ix 9,): 

, = 

2flalf111 2fla~f119 2flssfl'3 \fllgf133 / \flllf113 / \fl12f131 / 

(2 
An unambiguous method for determining the elements 
of ~, will be given in the next section. This one array 
is the same (algebraically) for the calculation of all 

4. Perform the following operations: Multiply the 
first row of S times the column (9,01' " ' ' '  9,06) term by 
term--(Sng,Q1+S12~,o2 + . - -  + SleTQe)--and mult iply this 
by the 1st element of the row, Y~I. Repeat  for the 
second row of S and the second element of the row, 
9,n($1~7~1+... +$26706), etc. The sum of these six 
expressions is S~. [S~ will be recognized as the 2~ 
element of the ' transformed' matrix S' and 9' as the 
' transformation matr ix '  in this special six-dimensional 
space. In  § 3 it will be shown how (4) results from the 
simultaneous contraction of quadratic combinations 
of the direction cosines and a fourth rank tensor.] 

Two examples will serve to illustrate the brevi ty 
and simplicity of this method" Suppose S~3 is required 
for the most general case of 21 elastic constants. The 
second and third rows of 5~ are substi tuted in (4) as 
a row and column respectively and the answer written 
immediately: 

* These quantities are often called the coefficients of com- 
pliance and elasticity respectively, and to further confuse the 
issue, in some references (Wooster, 1938), the C's are called 
the elastic constants and the 8's the moduli. 
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S~3 = • • IS13 S~3 $33 $3~ $35 Sa~ I fl~a 

_ LS, , ,  5'~o 8'3~ 8,o &~ 8 ~ _ _  /73,~32 

(5) 

2 2 2 2 
= /~21(Sl1~31 -~- ~12~32 ~- ~13~33 + k~14~32~33 + ~15~33~31 + ~16~31/~32)+ 

2 2 2 2 ~dz.~3~ + z-~= + s~33 + s.~3~33 + ~ 3 ~ 3 ~  + ~ . ~ ) +  
( . . . ) + ( . . . ) + ( . . . ) +  

2 2 2 

After collecting the coefficients of each S~., (5) is seen to be the same as the relation stated in the li terature 
(Cady, 1946)*: 

t 2 2 2 2 2 2 2 2 2 2 ~3  = ~ ~ + ~ 3 ~ 8 ~ + ~ 3 3 ~ +  ( ~ 2 ~ 3 3 + ~ = ~ ) ~ + . . .  + ~ 3 ~ 3 s .  + . . .  
+/~1/~3~(~2~33+~.~3~.)~6 * + ( ~ 2 ~ = ~ = + ~ 3 ~ - ~ 3 ~ ) ~ + . . .  
~- ~21/~31(~21~33 -~-/~23~31)815 ~- ~21~31(~21/~32 -~-/~22~31)S16 -}- . . . .  

If S~  is required for a cubic crystal, the proper ar ray of elastic constants for cubic symmetry  and the first 
row of 7 are inserted in (4) and the answer writ ten: 

t 

8.  /n,.n,3 
~,,, //~,:n,1 

S~ = 

=/~11(,8=3= +,8.8,2 +/~=s.) +/~.(/~1,81~ +/~.8,1 + ~,3s. )+. . .  +,~,,/~. (,8,d7=s,,); 
i .e .  S i l  = S , 1 - { 2 ( S , , - $ 1 ~ . ) - $ 4 4 } ( ~ 1 1 ~ 1 2  ~-~11~1321-~12~13) , 

which is the expected result (Zener, 1948). 

(B) The elastic moduli 
The moduli (the C's) are expressed in a rotated axis 

system using the same calculation except tha t  the 
matr ix  7 is replaced by the matr ix  ~ :  

(6) 

of a and C. I t  can easily be verified tha t  the Cga found 
in this way agree with those in the li terature found 
by much more cumbersome methods (Cady, 1946). 
The connection between a and ~, will be t reated in § 3. 

3. Mathematical development 
The transformation between two sets of uni tary  or- 
thogonal axes, (1), is writ ten in the s tandard tensor 
notat ion as 

Xk = ~kiXi  • (7) 

The matr ix  of the stresses, 

X=) X= Xzv 
X Xuz Xuu Xy  z 

X= X~u X= 
becomes simply 

( XI~ X12 X~3\ 
X~x X22 X2a ~ 
Xa~ Xa2 Xaa/ 

(8) 

i~31~11 ~32~12 i~30~13 (i~13/~32+k (~13~31+k (J~11~32+k 

~11t~21 ~12j1~22 ~131~23 t/~13~22 ) t~11~23 ) t~12~21 ) 
(2' 

The sequence of operations delineated above for cal- 
# # 

culating the Sat are thus the same for C~d except tha t  
the rows and columns of 7' and S are replaced by those 

* A n  error  in the  coeff icient  of $16 in the  expression for 
$23 in this  reference (equat ion (26), p. 70) has  been cor rec ted  
in this  paper .  

t I t  has  been po in ted  out  to the  au thors  t h a t  the  6 × 6 
a r r a y  ~ has  previous ly  been r epor t ed  b y  Bond (1943). How-  

ever,  i t  was a r r ived  a t  b y  collecting the  coefficients of the  
elastic cons tan ts  in t he  r o t a t e d  axis sy s t em and  a r ranging  
t h e m  in an  a rb i t r a ry  scheme r a the r  t h a n  b y  the  tensor  
m e t h o d  here in  presented .  
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and t ransforms as a second rank  tensor:  

X , s  = f l ~ f l s ~ X m , .  (9) 

Because of the conditions for equilibrium, X is sym- 
metric, i.e. 

X ~  = Xy~: = X ~  = X2~, etc. (10) 

The s t ra in  mat r ix  is also symmetr ic ,  bu t  if ez~, e~, 
etc. are defined as the strains in the usual manner ,  
the  strains do not  t ransform as the elements of a 
second rank  tensor  (Mason, 1950). However,  if we 
write the  ' s t ra in '  tensor  elements as 

A S I M P L I F I E D  C A L C U L A T I O N  F O R  T H E  E L A S T I C  C O N S T A N T S  OF C R Y S T A L S  

e = i ½ e ~  eyy ½%~1:~e~9 e~ e2a ) ,  (11) 
\ ½ e x z  ½ e y z  e z z /  \el3 e23 e33/ 

where e n = e~, e12 = ½e~, et~., then  
t 

e~ = / ~ o / ~ e o v .  (12) 

The two second rank  tensors (8) and (11) are connected 
by  a four th  rank  tensor. One way in which the  rela- 
t ionship between the tensor elements can be wri t ten is 

eo~ = s ~ , ~ , X m ~ ,  (13) 

which again is Hooke 's  Law. 
In  a ro ta ted  axis system, 

e~i = S~rsX~s , (14) 
and from (12) 

Subst i tu t ing from. (13), 
t 

But  from (9) 
x,~n = ~ x ; ~ ,  (15) 

and hence 
' /~ fl fl /~ (16)  e k i  ~ ko  i p S o p m n  r m  s n  x '  1"8 • 

Thus, comparing (14) and (16), 
! 

s~,~ = ~kofli~So~,nnflr~t~n . (17) 

S y m m e t r y  and energy-conservat ion considerations 
indicate t ha t  

8 o p m n  --= 8 o p n  m ~-- 8 p o n  m : 8 porn n : 8 m n o p  - :  8 n m o p  - ~  8 m n  po : 8 n m p o  , 

(18) 
~nd the 81 ~0pmn are 
wri t ten  in the form 

reduced to 21, Thu~ (131 can bc 
of the a r ray :  

XII  X22 X33 X23 X31 X12 

81111 81122 
81122 82222 
81133 82233 
81123 82223 
81131 82231 
81112 82212 

S1133 2s1123 2sir31 281112 
8~.233 282223 282231 282212 
83333 28332z 2'83831 283312 (19} 
~.3a~ 2~2323 2sg.3ax 282319. 
sz~al 2 s ~ 1 2 s 3 1 a I  2831t~ 
83312 282312 2831= 2'8).2t 2 

en 
e22 
e33 
e23 
e31 
el2 

Comparing the  Sovm, of (19) with the  Sab of (3), i t  is 
seen t h a t  

Sllll ~-- S l l  3119. 3 = ½S14 etc. | 
81122 = S12 S2323 = ~$44 etc. i (20) 
81133 ~--- S13 

Consideration of (18) and  (20) leads immedia te ly  to 
the  following contract ing scheme (Wooster, 1938): 

l l  22 33 23, 31, 12, ki, op, e t c . ]  

~1 $: 324 13~ 214 ] (21) 

1 2 3 4 5 6 ~ ,a ,@ e t c . ]  

The development  thus far has been included to  main- 
ta in  a nota t ion  consistent with  the  l i terature  a n d  to 
serve as a point  of depar ture  for wha t  follows. 

The elastic constants  are now required in the  ro ta ted  
(primed) axis system. S t a n d a r d  texts  (Cady, 1946; 
Zener, 1948; Voigt, 1910") usual ly suggest the  fol- 
lowing procedure:  Let  S~  be required,  and use one 
of the equations connecting e~. and the  X~, by  a 
ma t r ix  of the S~  (similar to (3)). Assume a single 
stress component  X~, be impressed, and write the  six 
equations (15) in terms of it. The values are then  sub- 
s t i tu ted  in (13), giving the  Cop in terms of S~, flko, and  
X~,. The cop are in t u rn  subs t i tu ted  in (12). Then  S~  
is the coefficient of X~ = X:.~ (where b is the  con- 
t rac t ion of rs according to (21)) in the  expression for 
e: = e~, and in the general case has 21 terms. 

Clearly this procedure is long and tedious. The intro- 
duction of the tensor nota t ion  permits  a considerable 
reduct ion in the  labor required and decreases the  
oppor tun i ty  for errors, since the  solution now in- 
volves the mult iple summat ion  indicated in (17) and 
the subst i tu t ion given in (20). Bu t  even this is quite 
t ime-consuming unless the crystal  possesses a high 
degree of symmet ry .  

However,  even a greater  simplification results, 
which permits  problems of this type  to be solved 
quickly and easily, if the  so~n  and the quadrat ic  
products  of the /~uv are contracted s i m u l t a n e o u s l y  in 
the special way described below. 

Suppose a par t icular  S~  is desired (this corresponds 
t ! to a par t icular  s~k~, = S~). Because both  k and i are 

fixed in (17), it is seen t ha t  there are only nine qua- 
drat ic  products  of flkoflip as o and p va ry  from 1 to 3. 
Fur thermore ,  since Sovm, = % ° , , ,  terms flkv/~io and 
fl~ofl~p (o # p) can be combined and thus  the  nine 
terms are reduced to six for a ~iven k and /. Hence 

these terms can be wri t ten 

flkofliv = 7 , ,  (22) 

* Voigt's treatment differs from that  of Cady (1946) and 
Zener (1948) (and described in this paper) in that it involves 
setting up the strain energy function in the two coordinate 
sys£ezns, transforming the coordinates, and comparing the 
coefficients of the elastic constants. Like the treatments of 
Cady and Zener, it is quite complex and requires various 
mnemonic devices to obtsdn the proper coefficients which 

t appear in the expressions, ~.g. how to write S~ a once $13 is 
~btained. etc.. 
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where ~ corresponds to the  contract ion of ko according 
to (21) in the  special way  defined by  (22), and  simi- 
lar ly  for ~. This step, which defines y~  and  forms the 
basis for this  method,  is seen more clearly by  the 
following scheme: 

~ =  ~,~ k = i 

I 2flk3fli3 = ~'~ k # i 
( ~ + ~ )  - ~ [ ~ = 4, 5, 6 

I 

(23) 

The reason for the  discrepancy between the terms 
with k = i and k # i becomes apparent  from considera- 
t ion of (20). 

Wi th  this effective collapsing of the fl quadrat ic  
terms from nine to six, the S~  of (3) are now the  proper 
constants  in  our special method of summat ion ,  ra ther  
t han  the 8o~m~ of (19). This is seen by  performing the 
sum in (17), collecting terms, using the  relations of 
(20) and  subs t i tu t ing  (22). Thus, instead of using (17) 
etc., the  Sab can be obtained direct ly as 

~ = 6  a = 6  

~=i a=l 

This is the /t# t e rm of the  ' t ransformed '  ma t r ix  S',  
i.e. 

s ' =  rs~,  (25) 

where y is the ma t r ix  of the terms formed in accordance 
with (23) and is given in (2), S is the ma t r ix  of (3) 

and ~ is the  transpose of y formed by  in terchanging 
the rows and  columns of (2). Hence, using the s tandard  
methods of ma t r ix  algebra and writ ing only those terms 
which contr ibute to S~, (24) can be wri t ten as (4) 
and thus  the method  s ta ted in § 2 has been proved. 

Likewise, one could in a s t ra ightforward manner  
obta in  the mat r ix  ~ by  writ ing instead of (131, 

Xop = c o ~ e ~  (13') 

and, proceeding in the same way, by  s imultaneous 
contract ion obta in  

C' -~ ~C~ (253 
and (2'). 

However,  i t  is much  easier (and more instructive) 
to obta in  the relat ion between a and y by  considering 
some funct ion of both the S 's  and the C's which is 
invar ian t  under  a t ransformat ion  of axes. The sim- 
plest funct ion of this  type  is the product  of the two 

matr ices  S (3) and  C (Zener, 19481. Since X = Ce 
and e = S X ,  therefore X = C S X  and thus  C S = S C = I ,  
where I is the inden t i ty  ma t r ix  (with l ' s  along the 
main  diagonal  and  zeros elsewhere). Thus S and C 
are reciprocally related:  

S = C -1 (and C = S - l ) ,  (26) 

where C - i  is the reciprocal ma t r ix  of C, i.e. its i j t h  
te rm is C~ 1 = CJi(-  1)i+J//iC, w h e r e / i  C is the deter- 
m i n a n t  of the ma t r i x  C, and  C z is the cofactor formed 
by  deleting the  j t h  row and i th  column of the  deter: 
m i n a n t  of C (Wills, 19461. I is invar ian t  under  a trans- 
format ion of axes and  thus, from (25) and (25'), 

and thus  

7 = ~ - 1 ,  (27) 

which can be verified termwise from (2) and (2'). 
Hence it~ is seen tha t  c~ and 7 are not  independent*  

and thus,  when one is determined,  the other is known. 
Computat ions are fur ther  faci l i ta ted since both y and 

are uni tary ,  i.e. / i s  = / i  F = 1. 

4. Summary 

A simple, easily remembered  scheme is developed for 
t ransforming the elastic constants  (or the elements of 
any  four th  rank tensor t connecting two symmctr ic  
second rank  tensor) from one rectangular  coordinate 
system to another  system rota ted with respect to the 
first. The applicat ion of this method,  instead of the 
convent ional  methods,  reduces 'the number  of steps 
to a m i n i m u m  with a corresponding reduction in the 
chance for errors in the computat ion.  The saving in 
t ime and  labor is considerable, as is shown by  two 
typical  examples.  

This work was sponsored in par t  by  the Office of 
Ordinance Research, U.S. Army  (Contract DA-30- 
069-0RD-459) under  the supervision of Dr T .A .  
Read,  whose suggestions regarding the presentat ion 
are appreciated.  

* Bond (1943) obtained (27) by considering the invariance 
of the strain energy, which of course cannot depend upon the 
reference system employed and is invariant under a transfor- 
mation of axes. 

The fourth rank tensor, which can be reduced from 81 
to 36 terms if it connects two symmetric second rank tensors, 
does not have to be symmetric itself for the formulae (181-(23) 
to be correct. The method is applicable even if S~ :4= Sax 
(Sopmn ~= Sm~p) since the development in no way depends upon 
the symmetry of S. In the case of elastic constants, So~ n = 
So_n_ because of the symmetry of e and X; So;tin n = Smnop 
be~ca"use of conservation of energy, i.e. ~U/a~ = X, where U 
is the strain energy function. 
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An X - r a y  S t u d y  of a-Keratin.  I. A General  Diffraction Theory  for, Convoluted 
Chain Structures  and an A p p r o x i m a t e  Theory for Coi led-Coi ls  

BY A. R. LANG* 

Philips Laboratories, Irvington-on-Hudson, New York, U . S . A .  

(Rece.ived 10 June 1955) 

A fibre structure is examined consisting of a periodic distribution of electron density along a.n 
infinite line which is folded or coiled in space in a pattern arbitrarily complex but  repeating 
regularly along the fibre axis. The electron-density distribution on the spiral is expressed as a 
Fourier series, periodic in the distance measured along the line, and the same holds for each of the 
cartesian coordinates of a point of the spiral. The expression for the structure amplitude on any 
layer can be written as a product of Fourier coefficients of these four series. The approximate 
theory for the coiled coil regards the compound helix as a minor helix deformed with the periodicity 
of the major helix, the scattering contribution of each turn of the minor helix being thereby modu- 
lated in phase and amplitude. The diffraction pattern of a three-strand cable composed of al 
helices has been calculated in the region of meridional spacing 6.1-4.7 ~ and shows qualitative 
agreement with the observed poreupine-qtdll pattern. 

I n t r o d u c t i o n  

Paul ing & Corey (1951a) proposed a structure for 
c~-keratin consisting of a-helices packed together in 
a l ignment  with the fibre axis, and Perutz (1951) 
pointed out tha t  the observation of a relat ively strong 
meridional  1.5 /~ reflection in materials  such as horse 
hair  and porcupine quill gave strong support  to this  
idea. On the other hand,  the projection on the fibre 
axis of the electron densi ty  of the a-hel ix shows no 
periodicity corresponding to the helix repeat  distance, 
and so the strong meridional  arc at 5.18 /~, charac- 

teristic of the s-keratin pattern, cannot be explained 
by  the simple model of a-helices in parallel  array. The 
way out of this diff iculty was shown in principle by  
Crick (1952) and Paul ing & Corey (1953), who sug- 
gested tha t  the c~-helix axis was inclined to the fibre 
axis and itself followed a larger helix. I t  is easily seen 
tha t  the projection on to the fibre axis of such a 
coiled-coil s tructure possesses a periodici ty corres- 
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pending roughly to the a -hehx  repeat,  and  hence will 
give some approach to the  observed meridional  dif- 
fraction pat tern.  The apparen t ly  complex calculation 
of the diffraction pa t te rn  of a structure containing 
coiled-coils can be much simplified by  regarding the  
structure as a grating composed of a repet i t ion of 
single turns  of the minor hel ix (i.e. the  a-helix)  wi th  
a superimposed modulat ion in scattering ampl i tude  
and phase, the modulat ion wavelength being the major  
helix axial-repeat  distance. On this basis the writer 
has derived a simple approximate  theory  for the  rapid  
calculation of ~h¢ meridional and n~ar-meridional dif- 
fraction pat te rn  of coiled-coils assembled in mult i-  
s t rand cables. An exact theory for the calculation of the 
whole diffraction pa t te rn  of coiled coils has  been 
developed independent ly  by  Crick (1953a). 

The present  paper  describes a general  diffract ion 
theory applicable to fibres consisting of atomic chains 
folded in arbi t rar i ly  complex fashion. This reduces to 
Crick's formula  as a special case. An account is then  
given of the approximate  theory. I t  is compared wi th  
the exact  theory,  and applied to calculate the  diffrac- 


